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Internal waves produced by a convective layer 

By A. A. TOWNSEND 
Emmanuel College, Cambridge 

(Received 8 February 1965) 

Fluid impacts on the base of a stably stratified region of fluid cause internal-wave 
ripples whose spread is predominantly horizontal if the duration of the impacts 
is long compared with the natural period of the stratified fluid. The development 
of a single ripple in a slightly viscous fluid is calculated, first with a constant 
vertical gradient of potential density and then with a gradient varying linearly 
with height. The single-ripple results are used to find the intensity of the 
statistically steady wave motion generated by impacts which are randomly 
distributed in space and time. Above a critical height, dependent on the viscosity 
and stability of the fluid and on the time and length scales of the impacts, wave 
energy falls off as the - 513 power of the height with a constant density gradient 
and as the - 2516 power with a linearly varying gradient. The predictions are 
compared with observations of temperature fluctuations in the stable region of 
an ice-water convection system and with observations of ‘ clear-air turbulence ’ 
over strato-cumulus cloud. Reasonable numerical agreement can be obtained 
with plausible values for the scales of the convective motion which provides the 
impacts. 

1. Introduction 
Laboratory observations of convection in a water-ice system show strong 

internal waves in the stably stratified region just above the region of active con- 
vection (Townsend 1964), and it is possible that the ‘turbulence’ reported by 
James (1959) and by Moore (1964) over strato-cumulus cloud is an internal wave 
motion generated by convection in the cloud. The large intensity and limited 
vertical extent of the waves was thought to be caused by the slow vertical spread 
of the ripples? excited by impacts of convective movements on the ‘inversion’, 
which stores energy, combined with viscous dissipation which destroys the 
ripples before they can spread far above the inversion. Theoretical reasons for the 
slow vertical spread were given briefly in the original paper, but it is not difficult 
to calculate both the development of a ripple excited by a single localized dis- 
turbance and the statistics of the stationary, random wave disturbance excited 
by a series of disturbances of random occurrence in horizontal position and time. 
As examples of convective layers adjoining regions of stable stratification are not 
uncommon in nature, the calculations may have more applications than the two 
quoted examples. 

n t,ransient disturbance. No confusion with capillary waves should occup. 
t ‘Ripple’ is used in the non-technical sense of the wave disturbance produced by 

20.2 
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2. Periodic progressive waves 
In  a stably stratified inviscid fluid, internal waves with small vertical displace- 

ments given by g = I,&) exp i(Zx - w t )  

can be propagated if +(z) satisfies 

d2+ldz2 + { ( w ; / d )  - l} 12$ = 0 

and the necessary boundary conditions (Lamb 1932). Oz is the vertical axis, and 
0; = - (g/p) (dpldx), where p is understood as potential density if the fluid is 
compressible. We consider the stratification defined by 

Wo = W1 for 2 > 0, 

= w2 for z < 0, 

with density continuous across z = 0 and the fluid effectively unbounded in all 
directions. Two independent solutions of (2.1) are then 

(2.2) 
$ ( z )  = cos [{(w:/w2) - I}+ Zz] for z > 0, 

= cos [ { (wi /w2)  - 1)+Zz] for z < 0, 

+(z) = sin [ { ( M : / u ~ )  - I)+ Zz] for z > O ,  

and it is clear that all waves of frequency w can be analysed into simple plane 
progressive waves with wave normals making angles of f tan-l {(wg/w2) - l}* 
with the horizontal. 

If the fluid is slightly viscous so that the viscous forces are all much less than 
the inertial and buoyancy forces, a travelling wave may have very nearly the 
inviscid form at any time but an amplitude decreasing exponentially with time. 
Necessary conditions are that the reduction of amplitude in a complete period 
should be small and that the ratio of wave energy to the local rate of energy loss 
by dissipation should be much the same everywhere. The second condition can 
be met either if w1 = w2 or if w2 = 0; i.e. wave energy is either distributed 
uniformly or is negligible in most of the lower layer. A straightforward calcula- 
tion of the rate of energy loss by viscous forces for the inviscid velocity distri- 
bution gives c = lvZ2wfw-2 2 for z > 0, 

where 1' is the kinematic viscosity, and the average energy density is 

(2.4) 

$(p++6"+w:g2)  = *w;, (2 .5 )  
- _  

where 
as exp ( - v 1 2 w : ~ - ~ t )  and that damped periodic waves exist of the form 

is the horizontal displacement. It foIlows that the wave energy decays 

5 = +(z~Z,w)exp{ i (Zx-wt ) -~~~Z~~~~-2 t ) .  (2.6) 

w 3 1 ~ w y 2  9 4. (2.7) 

The condition of weak viscous forces is met if 
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3. Single ripples 
The essential feature of a ripple is that the disturbance is highly concentrated 

in space at  the initial instant t = 0. The effect can be obtained by superimposing 
waves of different frequencies and wave numbers to produce an initial disturbance 
of the required form. A symmetrical two-dimensional ripple that does not 

require an initial injection of Auid (i.e. j:m cdx = 0) is 

= [Jym a2~2exp { - i(a2~2 + 7-2w2)) $ ( z l ~ ,  0) 
_ _  

x expi(Zx-wt)exp( -&d2~2,w-2t)dZd~, (3.1) 

where $(zlZ, w )  = cos [ { ( w ? / d )  - I}+ 1x1 for z > 0. 

A circularly symmetric ripple could be obtained by substituting the Bessel 
function Hf’(Zr) for expi(Zx), but, since 

exp (i(x - in) 
Ht’(X) N 

(&nx)-$ 

for large x, the only significant difference is the appearance of a factor (&rx)-i in 
expressions for the wave amplitude. To show that el satisfies our definition of 
a ripple, consider the disturbance 

co = O3 $ ( x l ~ ,  w )  exp { - *(a2~2 + +w2)> exp {i(~x - wt)  - gvl2wto-zt) dldw,  
--m 

(3.2) 

(3.3) 
related by = -cL232. a2co 

Neglecting the viscous term, 
2n 

(3.4) 

on the plane z = 0, showing that a and 7 are scales of length and time that measure 
the horizontal extent and duration of the initial disturbance. For x = 0, 

which, for 017 1, reduces to 

co = (2n/a7) exp ( - 2$2/72) exp { - i(w2172- 1) z2/a2}, (3.5) 

showing the vertical extent of the initial disturbance to be of order a/w17. 
A non-buoyant parcel of fluid arriving at  the plane z = 0 with initial velocity 
a/. would be stopped after rising a distance a/w17 if it did not mix with the 
surrounding fluid. If the ripple is produced by upcurrents from a region of con- 
vection, 7 should be interpreted as the duration of the up-current and a / ~  as the 
velocity. 
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Approximate expressions for Q valid for large values of x / a  can be obtained. 
After integration with respect to wave number, equation (3.2) becomes 

showing that contributions to c0 from Fourier components with frequency w are 
concentrated near the planes 

x = & { ( w y d )  - 1 ) g X .  

For large values of x/a,  the approximation 

where 

can be used to complete the integration. Although there is no difficulty in 
writing down the result in full, it  is convenient to impose the condition o : r 2  B 1 
and obtain a more manageable expression 

w, = wl(l + (x2/22)}-”, 

It will be seen that f oscillates rapidly in space and time as exp ( -  iw,t )  with 
amplitude varying more slowly and becoming very small if any of the conditions 

Z 2 / X 2  9 a2W:t2 B X4/Z2, W:t3 W 1 X 2 / V  (3.8) 

is satisfied. The more realistic disturbance Cl can be found by differentiating only 
to the rapidly oscillating part of c,,, i.e. 

exp ( - iw,t) = exp{ - iw,zt/(x2+ x2)B)  = exp ( - iwlzt/z) if w:72 1. 

Then Cl = ( a 2 w : 2 2 t 2 / ~ 4 )  c0. (3.9) 

With no viscous dissipation of wave energy, the characteristics are as follows. 
At a fixed position ( x ,  z ) ,  oscillations of the appropriate frequency wr are observed 
which grow initially as the square of elapsed time, reach maximum intensity at 
t = 24x2/aw1z, and then die away rapidly. Along a line of constant z /x ,  the 
propagation velocity of the maximum is (2)-~uw1z/x,  which is of order air in the 
middle of the disturbed region. The disturbance is very small for x/x more than 
( W ~ T ) - ~  and is zero on the plane x = 0. With viscous dissipation, the wave intensity 
in the middle of the disturbed region begins to fall of rapidly for x > r,, where 

rc = c ~ ~ / ( v w ; 7 ~ ) .  (3.10) 

4. Statistically steady motion 
If a region of active convection exists below a strongly stable layer, the inter- 

face will be disturbed by up-currents which arrive with random spacing in time 
and in the horizontal plane, and a statistically steady pattern of waves will arise 
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from the superposition of many ripples. With random arrival, the mean-square 
intensity of wave motion a t  any height is simply the product of the number of 
disturbances per unit area and time and the integral of the intensity of a single 
ripple over all horizontal area and all positive time at the particular height. 
Without viscosity) the intensity is independent of height but viscous forces 
destroy ripples after they have spread vertically a distance of order 

2, = a3/(vw3174), (4.1) 

and the wave intensity falls off at  greater heights. A simple argument leading to 
this form for z, is that the vertical propagation velocity is about a/(r2 ol) near 
the middle of the ripple and that, since the decay time is of order uZ/(vw:rz) for 
typical wave numbers and frequencies, z, equals the product, which is a"( vw31r4). 

To obtain the integral of Clc: over a horizontal plane z = const. and all positive 
time, two-dimensional ripples are suitable, leading to the same results as circular 
ripples. We take 

and find the integral for two special cases (i) z < z, and (ii) z B 2,. For the purposes 
of the integration) the effects of viscosity are negligible if z < 2,. Then 

and (4.3) 

and is independent of height. If z 9 z,, it  follows from the conditions for small 
ripple amplitude (3.8) that a2w;z2t2/x4 < 1 over the ranges of x and t significant 
for the process of integration. Then 

and (4.6) 

indicating a fairly rapid decrease of mean-square displacement with height. The 
two limiting forms for the integrated intensity predict the same value for 
z / z ,  = 1.144. In the statistically steady wave system produced by random 
ripples of the assumed form, we should expect the mean square of the vertical 
displacement at z = 1.142, to be of order one half of (y"),, the value at x = 0, and 
that, for large values of z/z,, it  would be 

Other parameters of the motion may be derived in a similar way from the 
basic ripple equation (3.9). Two of particular interest are the intensities of the 
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vertical and horizontal components of the particle velocity. In  the basic ripple, 
the vertical velocity is very nearly 

w1 = - iwr<l ,  

For large values of z/zC, the intensity is 

To find the intensity of the horizontal component of velocity, use the equality of 
mean potential and mean kinetic energy in the linear wave system, i.e. 

- -  
zwly 1 2 7  = +(u 2 +  WZ),  

where u is the projection of the velocity vector on the horizontal plane. For 
large values of w!72, the intensity is 

1 (4.9) 
for z < z,, 

Notice that the horizontal intensity is greater than the vertical intensity by 
a factor of order w!r2, more exactly 2w!r2 if z < z,, and (6123) w:r2  if z 9 z,, and 
is nearly equal to w! p. In  other words, the particle displacements and velocities 
are nearly confined to horizontal planes. 

In some situations, active convection may be occurring below only a part of 
the horizontal plane = 0, but waves may spread beyond the space above the 
convection. To estimate the extent of the lateral spreading, consider the wave 
motion produced by ripples with random distribution in time and origins 
uniformly distributed on the half-plane x > 0, x = 0. As before, the wave 
intensity is the product of the number of ripples initiated per unit time and area 
by the integral of the ripple intensity over all positive time and over the half-plane 
x > ro, where ro  is the perpendicular distance of the point of obsesvation from the 
edge of the convective area. It is appropriate here to use the circular ripples 
analogous to the two-dimensional ones, which lead to 

(4.10) 

for large values of r /a ,  where r is radial distance from the ripple origin. The 
constant is chosen to  give the same value of 

as the two-dimensional ripples. Integration over all positive time leads to 
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For heights such that wlrz/ro < 1, the exponentials in equations (4.1 1) are always 
nearly equal to one and the space integrations lead to 

3 0 1  2 
/x ,To 1: cl g at aA = gnz - - 

a ro I for ro < r,, 

= {&(%)! ( ~ ) ! / 2 3 ( ~ ) ! } ( l / ~ ~ ) ( ~ ~ ~ z / r ~ ) 6 ( r ~ / r ~ ) - ~  for ro 3 r,, 
(4.12) 

where r, = a 3 ( ~ 4 r 3 ) - 1 .  For heights large compared with ro(wlT)-l, the space 
integrations are effectively over the whole half-plane x 7 0, and the intensities 
are therefore one half of the intensities at the same height over the convective 

rc - \ 
Region of convection t t “1 ’ fz/ro)l (PI 0 

FIGURE 1. Distribution of wave intensities above and alongside a semi-infinite region of 
convection. (N.B. The wave intensities are correct only far from tho boundasies of the 
several regions, which are shown as dotted lines. The numerical coefficients have been 
rounded up to simple fractions.) 

area, as givenin limiting conditions by equations (4.3) and (4.5). The distribution 
of intensity is shown diagrammatically in figure 1. Along the plane ro = w1m, 
the wave intensity is greater than elsewhere at  the same value of ro, but it falls 
off as (!ro/!rc)-8 for large values of ro. Broadly, appreciable wave displacements do 
not occur more than, say, 3r, from the edge of the convective area or at a height 
of more than 32,. Notice that r, = O~TZ,. 

5. Ripples in a stratified fluid of varying density gradient 
If the density gradient varies with height, progressive waves of simple 

harmonic form are not damped by viscous forces in a simple way, and the 
method of the previous section cannot be used. With not too rapid a variation of 
density gradient,? the difficulty can be overcome by building the ripple from 
wave packets of size small compared with wo/(dwo/dz) but large compared with 
the mean wavelength in the packet. A two-dimensional wave packet with 
wave normals making an angle - 0 with the horizontal has vertical displacements 

J J  

t The approximation is that of the W.K.B. method. 
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where $(k ’ ,m)  is non-zero only for values of lk‘l and Iml much less than k ,  p is 
measured along the wave normal and q a t  right angles (figure 2) .  The frequency 
depends on k‘ and m, and, from (2.1), 

w + w’ = wo((k + k’) cos 8 + m sin S)/{(k + + m2}* 

= wo cos 8 + (wom/k)  sin8 if k f 2  +m2 < k2. (5.2) 

It follows from the dependence of frequency on wave number that the wave 
packet moves in the q-direction with group velocity (wo/k)  sin 8, while the waves 
move through the group in the p-direction with phase velocity (wo/k) cos 8. 

0 

n z Group velocity 
M 

@ O O q  

\ Phase velocity 0’ 

\ 
0 -  

\ 
\ X 

\ 
\ 
\ \e rk k-space r-space 

FXGURE 2.  Composition of a wave packet, showing relation of group and phase velocitieu. 
Full, sloping lines are lines of constant phase, i.e. ‘wave fronts’. 

If the packet moves into a layer of different stability, i.e. with a different value 
of wo, the boundary conditions require that i t  conserves frequency and the 
horizontal component of wave number (see figure 3 (a)). Then the vertical com- 
ponent of wave number is related to the constant horizontal component 

(5 .3 )  
I = kcos8  by 

n = {(wg/w2) - I}& Z = Z tan 8, 

and depends on the current position of the packet. An important consequence 
is that the vertical extent of the packet also changes and is proportional to the 
current value of cote. As a whole, the packet travels with group velocity 
(wo /k )  sin 8 = (w/Z) sin8 in the direction +n- - 8 = sin-l (wlw,), and its centre 
follows the trajectory defined by 

} (5.4) 
azL/dxt = cot 8 = w/(w: - d)&, 

dx,/dt = (wo/k)  sin2 8 = (w/Z) sin2 8 = ( w / l )  (1 - (w2/wi)} .  

Within the group, phase is propagated with the current phase velocity, which 
has a constant horizontal component w/I and a vertical component (wt  - d ) & / l  
(figure 3). The outcome is that a packet with the vertical displacements 

[ = f(x, z )  exp i[Zx + {(w:/w2) - l}k?z - wt]  
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near t = 0 (f(x, z )  is a slowly varying function of position with centroid at  
x = z = 0 and w1 is the value of w,, at z = 0 )  becomes at time t 

where xt, z, are obtained by integrating equations (5.4), and c is a function of z,. 

Group velocity 

f ---{@----- f z 

4 r o u p  velocity 

(4 
X - t  

@I 
FIGURE 3. Propagation of a wave packet. ( a )  Refraction at the interface between two 
layers of different density gradients. ( b )  Motion of a wave packet along the trajectory. 
Full, sloping lines are lines of constant phase. 

So far, the fluid has been supposed inviscid. If the fluid viscosity is small, the 
arguments used for a fluid of constant density gradient show that the logarithmic 
rate of decrease of the total energy of the packet is instantaneously id2w;w-2, i.e. 

~ l o g J ~ ~ ~ g P + ~ 2 + W : S 2 ) d x d z  = - v12w;w-2. (5.7) 

To find the energy at  any time, the rate must be integrated along the trajectory 

Remembering that mean potential energy equals mean kinetic energy in a wave 
motion and taking into account the change in vertical extent of the packet, the 
displacements at  time t are given by 
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Ripples very similar to those considered in tj 4 can be built by superimposing 
wave packets with a suitable distribution of horizontal wave number and 
frequency. The basic ripple, initially 

<n = ss_".. exp { - +(a212 + 72w2)} cos [{(w:/w2) - 1}&] exp (ilx) d l d o ,  

becomes a t  time t 

where xi, zt are the trajectory values for the appropriate frequency. Equation 
(4.3) is recovered if wo is a constant. 

Now consider the speciaI case, wg = yz ,  relevant to the ice-water convection 
system, and assume that w2 < yz over the region considered. Then the trajectory 
equations (5.4) lead to 

x, = 4y4w-%/ = wtis, (5.11) 

and the viscous damping factor is 

exp - (-$i,F~-4y.%zf) = exp - {L(3)*&w-!% 5 2  3 ,s ' t  8 1. (5.12) 

To simplify the integration over I ,  it is convenient to replace the viscous factor by 

exp - 2 { z ( ~ ) ~  1 3 8 v+-1t%2), - 

= a2 + 3( 3).2 $yw-lt%, 

which coincides with the original at factor values of 1, exp ( - 4) and 0. Putting 

2 5  

we find 

As before, contributions arise mostly from frequencies near 

The more likely ripple is 

(5.14) 
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To find the intensity of the statistically steady wave motion over a uniform 
distribution of ripple sources, we need the integral of Cl CT over all positive time 
and all x. For x < z,, where 

(5.16) 

(5.17) 

(5.18) 
-cc 18 

Notice that the ‘near’ disturbance diminishes as 2-4, an effect of the variation of 
density gradient. The effect of fluid viscosity is to reduce the mean square am- 
plitude by a factor of (1~15z/z,)- Y when z/x, is large. 

6. Application to real flows 
The wave amplitudes have been calculated by assuming a statistically uniform 

distribution of disturbances at  the bottom of the stable layer, all of the same form 
and specified by particular values of the characteristic length and time. The 
results obtained do not depend strongly on the assumed form except through 
these parameters and a wider class of disturbances could be treated by assuming 
various distributions of them. Unless initial disturbances with a higher degree 
of symmetry are used, most of the results are unchanged if suitably averaged, 
effective values of the parameters are substituted. Initial disturbances of lower 
symmetry, e.g. the basic disturbance 6, involve injection of fluid from outside. 

In  practice, the disturbances are most likely to arise from the presence of 
convective motion below the stably stratified fluid, and it is necessary to consider 
the relation of the characteristic scales of length and time to the convective 
motion. If a weakly buoyant parcel of fluid enters the stable region moving with 
vertical velocity vo, it may penetrate a distance of vo/wl before falling back if no 
mixing occurs. It has been shown that the initial disturbance (see equation (3.5)) 
extends into the stable fluid a distance of order a(u17)-l if w l r  is large, and so 

vo M air. (6.1) 

The implication is that the horizontal scale CI. is determined by the horizontal 
spreading of the parcel as it is retarded by the buoyancy forces, The time scale 
depends on the duration of the impact which, for a roughly spherical parcel, is 
about m/Q1. Matching the simple harmonic time variation to the error function 
of equation ( 3 4 ,  the effective valueof 7 is nearly wil and w17 1. Concentration 
of wave motion just above the bottom of the stable layer requires that w?r2  + 1, 
and the theory is applicable to convective-stable systems only if the convective 
motions are persistent columns rather than compact thermals. Then r is the 
lifetime of a single column. 

Let us examine now the relevance of the ripple theory of 0 5 to the observed 
waves in the water-ice convection system (Townsend 1964). The arguments of 
the previous paragraph apply equally well to the stratification characteristic of 
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the water-ice system, i.e. w i  = yz for z > 0. It has been shown that the wave 
intensity decreases rapidly with height when z exceeds 

Study of the temperature records suggests that the critical height is nearly where 
the mean temperature is 6 "C, i.e. about 4mm above the position of maximum 
density. Inserting the values 

y = 0-36 em-l v = 0.015 cmZsec-l, 

we find (a6/+)* = 0.04 cmg 8ec-Z. 

From the temperature records, the dominant frequency is about 0.1 rad see-l, 
corresponding to r = losee, and then a = 1.5cm and wo z 0.15cmsec-l. These 
values of a and o,, are completely plausible, and the condition that o$r2 > 1 
near z = z, is well satisfied, i.e. wgr2 = yzcr2 = 14. 

The other real situation that may be represented by the ripple model is the 
motion in the air immediately above extensive layers of strato-cumulus cloud, 
which are strongly stable because of heat radiation from the cloud top. Flight 
observations described by James (1959) and by Moore (1964) show that ' clear-air 
turbulence' extends to about lOOm over the top, then becoming very small. 
Supposing the 'turbulence ' to be a random wave motion excited by the convec- 
tion in the cloud, the wave amplitude should decrease fairly rapidly beyond 

z, = ~ 

where K ,  replaces Y as an effective coefficient of eddy viscosity. In  terms of the 
velocity of the convective columns, 

a3 

K,o;r4 ' 

and, putting w1 = 6 x 10-2sec-l (corresponding to the mean of the observed 
temperature gradients, about 100 "C km-1) and assuming v0 = 1 m see-l and 
r = 100 sec, z, = 100 m corresponds with an effective viscosity of 

KTn = 5 x 103cm2sec-L, 

well within the range of Km suggested by James and Moore from other considera- 
tions. The value of wFr2 is 36, satisfactorily large. Moore reports temperature 
fluctuations just over the cloud tops with standard deviations of about 0.5 degC. 
In  the gradient of 10O0Ckm-l, these fluctuations would be caused by vertical 
displacements of 5 m, requiring an initial updraught of 0.3 m see-l. Since the 
inversion is not perfectly sharp and since the temperature records appear to be 
rather intermittent, the argument underestimates the probable displacements 
and the result is in fair agreement with the suggested value of vo = 1 m see-l. 

The theory of $4 suggests that internal waves can spread beyond the edges of 
a finite cloud confined below an inversion. The waves should be comparable in 
magnitude with those above the cloud within horizontal distances less than 
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rc = wlrze. For the strato-cumulus layer, the distance is about 600m. In less 
stable conditions the spread is greater. 

The calculations have assumed an absence of wind shear in the stable layer, 
which is a good approximation only if the variation of wind in the disturbed 
layer is small compared with typical horizontal phase velocities, i.e. with 
a/r zi v,,. For the conditions above the strato-cumulus layer, the upper limit of 
wind shear is of order 10m see-lkm-l. 

7. Discussion 
The good agreement of the theoretical predictions with the observations of the 

water-ice convection system implies that convection is carried out by rising 
columns of comparatively long lifetime whose vertical extent is large compared 
with their width and may be comparable with the total depth of the convective 
layer. Thermals, i.e. rising quasi-spherical parcels of buoyant fluid, could not 
satisfy the essential condition of large w;r2, and it is likely that they can be the 
principal agents of convection only in a non-turbulent environment. In  the 
troposphere, the normal state of stable stratification ensures that clear air is 
relatively non-turbulent and so thermals are common. Within a convective 
cloud of large horizontal extent, the environment of convective elements is 
likely to be highly turbulent, resembling the conditions found in free convection 
observed in the laboratory and in the earth’s boundary layer (Townsend 1959; 
Priestley 1959). If the clear-air turbulence found over strato-cumulus cloud is 
interpreted as internal waves excited by convective movements in the cloud, 
the large value of w;r2 implies that the convective processes exert sustained 
forces on the bottom of the stable layer. If the processes are mostly rising elements 
of warm air, they must be columns rather than thermals. If they are parcels of 
cooled air detaching themselves from the cloud top, the detachment must be 
a prolonged process, consistent with the formation of downward-moving columns 
but not excluding completely the possibility that downward-moving thermals 
may develop in the interior of the cloud. 

I am indebted to Dr T. H. Ellison and to Mr J. S. Sawyer for useful information 
about the problem and a fruitful discussion. 
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